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Existence and Stability 
of a Simple Sulfide of Iron(III) 

Sir: 

The existence of a simple sulfide of iron(III) has been de­
bated periodically for several years.1^8 The central difficulties 
that have produced much of the debate are, first, the apparent 
instability of the compound and second, the lack of a good 
method for characterizing insoluble amorphous or micro-
crystalline materials of this type. In view of the possible geo­
logical significance of iron(III) sulfide9 and its relation7 to 
iron-sulfur minerals (pyrite, marcasite) that are a major 
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Figure 1. Mossbauer spectrum of iron(III) sulfide at 78 K (bar indicates 
error). 

problem in the utilization of many coals, we have undertaken 
a detailed study of the chemical and physical properties of this 
material. We report here a synthesis, infrared characterization, 
and Mossbauer study with particular emphasis on the thermal 
stability of the compound. Previous reports4'5 on the synthesis 
of Fe2S3 have casually mentioned Mossbauer measurements, 
but details (center shifts, quadrupole splittings, thermal ef­
fects) were not given. 

It is claimed that Fe2S3 can be obtained from iron(III) al-
koxides and H2S in organic solvents,4 from ammoniacal so­
lutions of iron(III) tartrates and H S - ion,4 from H2S and 
Fe203-H208 or suspensions of Fe(OH)3 at pH 9.5,5 and by 
titrating FeC^ with Na2S.10 The first two methods give 
products that are heavily contaminated and, importantly, all 
previous preparations apparently were carried out at room 
temperature, or higher. 

We have prepared1' iron(III) sulfide in an amorphous form 
by treating stoichiometric quantities of aqueous Fe(III) with 
aqueous Na2S at 0 0C or below. Examination of the material 
with a scanning electron microscope equipped with an energy 
dispersive x-ray spectrometer confirmed the fact that sodium 
and chloride were not present and that the atomic ratio of Fe:S 
is 1:1.5. Thus at least on an empirical basis, the material pre­
pared is Fe2S3. The Mossbauer spectrum12 of the compound 
at 78 K is shown in Figure 1; this spectrum is basically different 
from that of any of the known iron sulfides or compounds such 
as NaFeS2.6 The spectrum was analyzed by using a nonlinear 
least-square fitting program assuming Lorentzian line shapes. 
The best fit was obtained with two doublets with the following 
center shifts (CS) and quadrupole splittings (QS): doublet A, 
CS = 0.35 ± 0.06 mm/s, A£Q = 0.82 ± 0.06 mm/s; doublet 
B, CS = 0.51 ± 0.12 mm/s, AEQ = 0.88 ± 0.12 mm/s. These 
results indicate that there are two different environments for 
the iron ions in the compound, both with a symmetry lower 
than cubic. The observed CS is consistent with iron(III) or 
low-spin iron(II).13 In the latter case the ground state is non­
magnetic, as in pyrite, FeS2-14 

In order to characterize fully the charge state of the iron ion, 
Mossbauer measurements were carried out at 4.2 K. A six-line 
pattern with relatively broad line widths was obtained, as 
shown in Figure 2. The hyperfine magnetic field at the 57Fe 
nucleus is 253 ± 6 kOe.15 The presence of a magnetic splitting 
at 4.2 K completely excludes the presence of iron(II), con­
firming the formation of the compound as a sulfide of iron(III). 
It is to be noted that the presence of a similar hyperfine mag­
netic field for the two sites of iron excludes the possibility of 
having two different compounds. The value observed for the 
splitting is much smaller than that expected for high-spin 
iron(III),16 indicating a high degree of covalency. In order to 
determine the type of order in this compound, measurements 
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Figure 2. Mossbauer spectrum of iron(III) sulfide at 4.2 K (bar indicates 
error). 

were carried out at 4.2 K with an external magnetic field ap­
plied collinear with the y-ray direction. This resulted in a 
broadening of the outer Mossbauer lines, indicating the pres­
ence of magnetic moments at the iron ions aligned in opposite 
directions. Thus, it can be inferred that iron(III) sulfide is 
ordered antiferromagnetically at 4.2 K. 

Mossbauer measurements at elevated temperature also have 
been made, the details of which will be published in future 
work. Suffice it to say here that an irreversible transformation 
to other products begins to occur at 20 0C in vacuo. Although 
the decomposition is slow considerable doubt is thus cast on 
the reliability of the previous synthetic procedures, all of which 
would appear to have been carried out at temperatures near 
that where Fe2S3 decomposes. 

The infrared spectrum17 of iron(III) sulfide exhibits bands 
at 795 (sh), 485 (br), 390, and 320 cm-1. The spectrum clearly 
is different from that of FeS2 and other iron sulfide miner­
als.18 
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Carbon-Carbon Bond Formation at 
C4. of a Nucleoside. Synthesis and Utilization 
of a Uridine ^,S'-Enamine1 

Sir: 

The search for methods allowing substituent incorporation 
at C4' of nucleosides began with the isolation and structure 
identification of nucleocidin (1), a powerful, but toxic, anti­
trypanosomal agent with a fluorine in this unique position on 
the carbohydrate ring.2-5 Synthetic methods have thus far been 
developed which allow incorporation of fluorine,6'8 various 
alkoxyl groups,1'9"1! and hydroxymethyl.12-14 The challenge 
of devising a reasonably versatile method for carbon-carbon 
bond formation at C4', however, is still at hand. We wish to 
report that alkylation of a nucleoside 4',5'-enamine with allylic 
halides provides a solution to this problem. 

Our work in the area of nucleoside 4',5'-enol acetates15 and 
their conversion to certain 4'-substituted compounds1 

prompted us to examine the feasibility of utilizing a 4',5'-
enamine as a vehicle for introduction of a carbon-carbon bond 
via enamine alkylation. To date no literature reports exist for 
the formation of a nucleoside enamine, although recently a 
carbohydrate enamine was reported.16 Treatment of 2',3'-
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